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Attempts at Object-Oriented Analysis
..... Using Traditional Case Tools ﬁ
Agenda

e The OOD/Ada Validation Project
¢ Why Do Object-Oriented Requirements Analysis?
o What Is A "Traditional” Case Tool?

e Merging The Two: Our Four Attempts

NOV "89/as Link Flight Simulation Division of CAE-LINK Corporation

[ Attempts at Object-Oriented Analysis |
..... Using Traditional Case Tools

The OOD/Ada Validation Project

GOALS:

® APPLY OBJECT-ORIENTED METHODOLOGY TO A PROJECT
-- INCLUDING REQUIREMENTS ANALYSIS
-- USED DERIVITIVE OF MV-22 SPECIFICATIONS (SRS, IRD)
-- START AFTER SYSTEM DESIGN REVIEW THROUGH SWI

® MAKE USE OF EXISTING TOOLS

® ADHERE TO DOD-STD-2167A

@ PRODUCE REUSABLE ADA COMPONENTS

SUPPORT:

® STARTED IN 1987
@ FUNDED BY IR&D
@ STAFF RANGED FROM 4 TO 10




[ Attempts at Object-Criented Analysis ‘
_____ Using Traditional Case Tools ﬂ

Why Object-Oriented Analysis?

FUNCTIONAL
REQ. [ > FUNCTIONAL
E ANALYSIS DESIGN
\Y%
O
L
U
T FUNCTIONAL OBJECT
I REQ. ORIENTED
O ANALYSIS DESIGN
N
Bl ORIENTED
: REQ.

ANALYSI

NOV "89/ajs Link Flight Simulation Division of CAE-LINK Corporation 4

2l [ Attempts at Object-Oriented Analysis
_____ Using Traditional Case Tools

Object-Oriented Analysis —— Why?

TRADITIONAL SMOOTH TRADITIONAL
TECHNIQUE TRANSITION TECHNIQUE
FUNCTIONAL 1 FUNCTIONAL
REQ. | — > DESIGN
ANALYSIS

® CONSISTENCY OF ¢ POOR MAINTAINABILITY
METAPHOR e LIMITED REUSE POTENTIAL

® LEADS TO LIMITED USE
OF ADA FEATURES

NOV ‘R9/aw




Attempts at Object-Oriented Analysis
,,,,, Using Traditional Case Tools

Object-Oriented Analysis ~- Why?

TRADITIONAL NOISE DESIGN METHOD
TECHNIQUE OF CHOICE
FUNCTIONAL OBJECT
REQ. ORIENTED
ANALYSIS DEsIGN

® LACK OF TRACABILITY ¢ paps TO REAL WORLD

® LACK OF CONTINUITY e REUSE
BECAUSE OF SHIFT IN ¢ MAINTAINABILITY

METAPHORS ® MAPS WELL TO ADA
e REQUIREMENTS OFTEN
TAINTED WITH DESIGN

NOV "89/2)s Link Flight Simulation Division of CAE-LINK Corporation 6

| [ Attempts at Object-Oriented Analysis )
_____ Using Traditional Case Toals

Object-Oriented Analysis —— Why?

NEW SMOOTH DESIGN METHOD
TECHNIQUE TRANSITION OF CHOICE

® MODELS REAL ¢ TRACABILITY e MAPS TO REAL WORLD
WORLD e CONTINUITY ® REUSE
® ALSO DESCRIBES OF METAPHORS ¢ MAINTAINABILITY
FUNCTIONALITY e REQUIREMENTS STILL ¢ MAPS WELL TO ADA
® POSSIBLE REUSE TAINTED WITH DESIGN
OF ANALYSIS (BUT IMPACT IS MINI-
MIZED)

® MAINTAINABILITY




~ Attempts at Object-Oriented Analysis =
_____ Using Traditional Case Tools E
Traditional Case Tool

DATA FLOW + CONTROL FLOW + STATE TRANSISTION + PROCESS SPEC + DICTIONARY

CONTEXT DIAGRAM

LEVEL 1

LEVEL 2

DICTIONARY
== |[CA | CBJ
G::== GA + GB

NOV "89/ajs Link Flight Simulation Division of CAE-LINK Corporation 8
[ Attempts at Object-Oriented Analysis |
Using Traditional Case Tools
Our First Attempt
STRUCTURED ANALYSIS UNSUCCESSFUL
WITH REAL-TIME | | OBIECT CARVING _ 0
EXTENSIONS =

.‘Q...Q....O‘..... WEAKNESSES:

¢ MUST MAINTAIN TWO
R INDEPENDENT VIEWS

o -- CREATED ANOTHER
DIAGRAM TO MERGE
VIEWS

(MANUAL PROCESS)

e POTENTIAL FOR

S
CONVOLUTED MAPPING
OBJECT * Y BETWEEN OBJECTS AND
i DA RrY g FUNCTIONS

NOV ‘89/ajs

o
Tiat Bl e - ¢ i .



[ Attempts at Object-Oriented Analysis |
_____ Using Traditional Case Tools

Our Second Attempt

PARALLEL DECOMPOSITION
UNSUCCESSFUL

o + FUNCTIONAL =
OBJECT VIEW VIEW

y , STRENGTHS:
/
/ S ¢ SHOWS OBJECT
’ INTERFACES
PROCESS OBJECT WEAKNESSES:
DECOMP. DECOMP.
® MUST MAINTAIN TWO
INDEPENDENT VIEWS
® CANNOT VERIFY
EQUIVALENCE USING
TOOL
NOV "89/a)s Link Flight Simulation Division of CAE-LINK Corporation 10
Attempts at Object-Oriented Analysis | :
Using Traditional Case Tools ﬂ

Our Third Attempt

FOD - FUNCTION/OBJECT DECOMPOSITION

CONTEXT

DIAGRAM @ SYNTHESIS OF

¢ STRUCTURED ANALYSIS WITH
REAL-TIME EXTENSIONS

® OBJECTS

“~~._ @ BUBBLES CAN REPRESENT

® FUNCTIONS
® OBJECTS

@ OBJECT CAN DECOMPOSE INTO
¢ OTHER OBJECTS

“~~~~___ e FUNCTIONS OF PARENT
OBJECT

@ ONE SET OF DIAGRAMS HAS

® OBJECT PARTITIONING
¢ FUNCTIONS




Using Traditional Case Tools

Attempts at Object-Oriented Analysis | E

Example of the FOD -- Decomposition of Fuel System

NOV ‘89/ajs

Link Flight Simulation Division of CAE-LINK Corporation

r~

Using Traditional Case Tools

Attempts at Object-Oriented Analysis | ﬂ

Observations on the FOD

STRUCTURED
ANALYSIS WITH
REAL-TIME OBIECT VIEW
EXTENSIONS
SUCCESS!

@ STRENGTHS

¢ WE GOT SOMEWHERE!
® FELT VERY NATURAL

¢ GOOD FOR IDENTIFYING OBJECTS

® ENSURES CONSISTENCY OF
INTERFACES

® WEAKNESSES

¢ EMPHASIS ON DATA DRIVES
ANALYSIS INTO TOO MUCH
DESIGN

¢ REQUIREMENTS ARE NOT
EXPLICIT -- MUST BE IMPLIED
FROM DATA

¢ DID NOT CREATE GOOD MIND-
SET FOR OBJECT-ORIENTED
DESIGN -- TENDED TO LEAD
TO "INPUT-OUTPUT"” DESIGNS

NOV "89/as

Link Flight Simulation Pivitian af CAF-1 INK Crmnarsrinn



Attempts at Object-Criented Analysis
_____ Using Traditional Case Tools

Our Latest Attempt — Entity/Relationship-Based

® NOT TRADITIONAL ERDs
® BUBBLES REPRESENT OBJECTS

© FORMER "DATA FLOWS” ARE

* DATA
IF EXPLICITLY DEFINED BY
REQUIREMENTS

- MOST EXTERNAL OBJECTS
- MAYBE OTHERS

¢ RELATIONSHIPS
IF DATA IS NOT DEFINED
BY REQUIREMENTS

- MOST DEVELOPED OBJECTS

NOV "897ass Link Flight Simulation Division of CAE-LINK Corporation 14

[ Attempts at Object-Oriented Analeis | 4
_____ Using Traditional Case Tools ﬂ

Example of ER Approach - A High Level View

.
.




Attempts at Object—Oriented Anaiysis ) ‘
_____ Using Traditional Case Toor ﬂ

Observations on Our E/R Analysis
O WE USED E/R ANALYSIS FOR A SMALL PART OF PROJECT
3 STRENGTHS

¢ Good at identifying implementable objects

* Keeps effort at the analysis level —- much less design is
introduced

e Good media for communication

* Easily supports object oriented design. Relationships can
easily be translated into data/operations during design

Q WEAKNESSES
e Some parts of tracability sacrificed

¢ Layering/decomposition difficult - tends to create layers
of communicating objects

NOV "89/a)s Link Flight Simulation Division of CAE-LINK Corporation

| [ Attempts at Object-Oriented Analysis | L
D Using Traditional Case Tools ﬂ

Interactions of Tools and Methods

® USES TRADITIONAL ENGI-

R |
? The Ideal World G  NEERING APPROACH
2 | ® METHOD SELECTED BASED
e . | ! ON REQUIREMENTS
E i METHOD| | TooL | BB ® TOOL SELECTED THAT SUP-
- SN  PORTS METHOD CHOSEN

D e T S O NI STO - Y8

¢ THE "IDEAL” WORLD RARELY EXISTS
QO MAY NOT BE TOOL TO SUPPORT DESIRED METHOD
Q NOT MANY PEOPLE CAN AFFORD TO BUILD CUSTOM TOOLS ANYMORE
Q TOOLS MAY BE DICTATED BY THE CUSTOMER
Q TOOL SELECTION MAY BE LIMITED BY AVAILABLE $$$$5$$

Q MAY BE REQUIRED TO USE EXISTING TOOLS AND/OR PLATFORMS




| | Attempts at Object-Oriented Analysis )
_____ Using Traditional Case Tools

Interactions of Tools and Methods

Common Approach
: ® TOOL BECOMES BASIS FOR

ENGINEERING PROCESS

TOOL METHOD © USES METHOD EXPLICITLY
SUPPORTED BY THE TOOL

¢ THIS APPROACH MAY NOT BE EFFECTIVE:

Q THE "DEFACTO” METHOD MAY NOT PRODUCE THE DESIRED RESULTS

Q SET OF POSSIBLE METHODS ARE LIMITED BY SET OF POSSIBLE TOOLS
® SIGNIFICANT LAG TIME BETWEEN IMPROVED METHODS AND TOOLS TO SUPPORT THEM

Q METHODS MAY BE DICTATED BY THE CUSTOMER

Q THE METHOD IMPLIED BY A TOOL USED IN ONE PHASE OF DEVELOPMENT
MAY CONFLICT WITH THE METHOD OF DIFFERENT TOOLS USED IN OTHER
PHASES

NOV "89/ajs Link Flight Simulation Division of CAE-LINK Corporation

[ Attempts at Object-Oriented Analysis |
,,,,, Using Traditional Case Tools

Interactions of Tools and Methods

B oo =

Our Approach
METHOD )

© SYNTHESIZES CAPABILITIES OF THE TOOL WITH METHOD

Q NOT A PERFECT SOLUTION, BUT WORKS WITHIN LIMITATIONS OF TQDAY'S
TOOLS

Q WILL NOT BE REQUIRED AS METHODS STABILIZE AND TOOLS ARE BUILT TO
SUPPORT THEM

NOWV ‘A0/nie



| Attempts at Opject-Oriented Analysis | ‘
..... Using Traditional Case Tools ﬂ

Interactions of Tools and Methods

i
i

x " Our Approach o —

13

NOV 897ajs Link Flight Simulation Division of CAE-LINK Corporation






MODELING AND ANALYSIS OF AEROSPACE

SYSTEM COMPONENTS USING EASYS5
(ENGINEERING ANALYSIS SYSTEM 5)

SABBIR A. HOSSAIN, PhD
November 07, 1989



« INTRODUCTION
» SPACECRAFT / SPACE SHUTTLE SYSTEM COMPLEXITY

DIFFICULT TO DESIGN, TEST AND TROUBLE-SHOOT LARGE SCALE SYSTEM

NEED FOR MORE POWERFUL TECHNIQUES FOR MODELING AND ANALYSIS OF A SYSTEM BEFORE
THEY ARE BUILT

FOR ELECTRICAL CIRCUITS/SYSTEMS - SPICE

L 2

FOR DYNAMIC SYSTEM - DEDICATED MODEL OF SPECIFIC SYSTEMS

+ COMMON DRAWBACK:
WITH INCREASED COMPONENTS/COMPLEXITY
INCREASED MEMORY REQUIREMENTS
INCREASED CPU TIME
CONVERGENCE PROBLEMS _
LACK OF FLEXIBILITY FOR FUTURE MODIFICATION

* MODULAR APPROACH TO MODEL BUILDING WITH FOLLOWING ATTRIBUTES:
* ACCURACY TO PROVIDE SUFFICIENT DETALLS ABOUT THE BEHAVIOR OF THE INDIVIDUAL

COMPONENTS FOR DESIGN AND TROUBLESHOOTING
* VERIFIABLE WHENEVER EQUIPMENT OR SUBSYSTEM EXPERIMENTAL TESTING IS POSSIBLE

* FLEXIBLITY FOR FUTURE MODIFICATION
* EFFICIENCY FOR COMPUTER CORE MEMORY AND COMPUTATIONAL TIME

* MODULAR APPROACH - EASYS, MATRIX X, CONTROL C
EXPERIENCED WITH EASYS5



- FEATURES:

*EASY5/W ALLOWS ONE TO MODEL A DYNAMIC SYSTEM USING PREDEFINED MODEL
COMPONENTS CONTAINED IN EASYS LIBRARIES OR CUSTOM DEFINED LIBRARIES.

* MODEL AND ANALYZE BOTI] CONTINUOUS AND DISCONTINUOUS, LINEAR AND
NONLINEAR, AND MULTI-RATE SAMPLED DATA SYSTEMS.

» USL ONE SYSTEM MODEL IFOR BOTH LINEAR AND NONLINEAR ANALYSIS.

* MODELING PROGRAM CAN BE FORTRAN, ADA, PASCAL OR C.

% -C

Plant Model

* EASY5/W PERMITS ONE TO:
* SIMULATE DYNAMIC BEHAVIOR OF A NONLINEAR OR LINEAR SYSTEM.
* LOCATE A STEADY-STATE OPERATING POINT FOR A NONLINEAR MODEL.

* PERFORM THE FOLLOWING LINEAR ANALYSES:

FREQUENCY RESPONSE TRANSFER FUNCTION
ROOTLOCUS LINEAR MODEL GENERATION
EIGENVALUE SENSITIVITY SINGULAR VALUES

POWER SPECTRAL DENSITY STABILITY MARGINS

* DISPLAY AND PRINT FOLLOWING ANALYSIS RESULTS:

BODE PLOTS NICHOLS PLOTS
NYQUESTPLOTS PHASE PLANE PLOTS
ROOT LOCUS PLOTS

* PERFORM CONTROL SYSTEM DESIGN WITH:

PARAMETER OPTIMIZATION
OPTIMAL CONTROLLER DESIGN
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Two-port component coupling.

The terminal characteristics of each component are de-
scribed by the following equation:

L=l wlle) g

Generic Model

IIDO \‘
Neland
.0 /s Components Executable
s-= Model
oo
Program
Component -
Connection Generic
. Tables Executable
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Component

Data
Tables
—_—
EASYS/W
Analysis
Program
i Executable /
ENGINEERING
BLOCK DIAGRAM
EASYS
8LOCK DIAGRAM

0

MODEL

DESCRIPTION
STATEMENTS

SCHEMATIC
DIAGRAM, OATA
REQUIREMENT S,
FORTRAN
LISTING

ANALYSTS

EASYS MODEL
GENERATION
PROGRAM

MODEL

UIROUTINj

STATEHENTS

EASYS
ANALYSIS
PROGRAM

L 5/ Analysis
Results

COMPONENT
LIBRARY

PRINTED
outPUT




Foreground Programs Background Programs

e e e eseccecaacancmaaa o .
' . '

--------------- ) Executanie
Workstation  f-a-ccttTI 0 Maodel
Program : / | Suiider
bew ) Executable «"//‘i Program
0 L =
! L
: ]
t Plot ,_._L,' PlotFile  ~ ' * Analysis
X Program ‘ ‘, Pragram
i t +
f , Analysis /
! ! Output . '
et p et e J

EASYS/W PROGRAM STRUCTURL

+ TWO EXAMPLES OF APPLICATION OF EASYS IN SPACECRAFT HARDWARE SIMULATION

AND TRUBLESHOOTING
* SHUNT CONTROL VOLTAGE REGULATOR FOR SPACE SATELLITE

* AUXILIARY POWER UNIT (APU)
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Fig. 11 Step responses for the single shunt model with Gain = 18

and Delay = 1 mS for :
(a) REA output voltage
{b) Bus voltage.
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Transier orbit simulation data
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ORBITER APU SYSTEM CAUSALITY

PC vALVE SO VALVE
COMMAND COMMAND
PTANK PIN PFP PFP PUV ev) PvI
2 4 5 7 u 8 9 10
o [~ T c e a0 < 0OTMC
1. FUEL TANK

2. FUEL TANK TO FUEL PUMP FLUID INERTIA AND COMPRESSIBILITY
3. FUEL PUMP

FUEL PUMP TO PC VALVE FLUID COMPRESSIBILITY

PC VALVE

PC VALVE TO SO VALVE FLUID COMPRESSIBILITY

7 SOVALVE

[ T IS

8 SO VALVE TOINJECTOR COMPRESSIBILITY
9 INJECTOR

10 COMBUSTOR COMPRESSIBILITY

11 TURBINE

2. LUMPED SYSTEM INERTIA

13 GEARBOX LOAD

14. PUMP LOAD ( FEED PUMP AND HYDRAULIC PUMP

Figure 5: APU system causality,
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TRAINING DIVISION

THE ROLE OF TRAINING REQUIREMENTS ANALYSIS
IN DEFINING SIMULATION REQUIREMENTS FOR TRAINING

NOVEMBER 7, 1989
SUSAN TEMPLE
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/ PURPOSE OF PRESENTATION N

N

- PROVIDE AN OVERVIEW OF THE TRAINING
REQUIREMENTS ANALYSIS PROCESS BEING
USED FOR SPACE STATION FREEDOM

- DEMONSTRATE HOW TRAINING
REQUIREMENTS ANALYSIS AIDS IN THE
DEFINITION OF SIMULATION REQUIREMENTS
FOR TRAINING

1 /

/

SHUTTLE MISSION SIMULATOR (SMS)
REQUIREMENTS DEFINITION:

HISTORICAL PERSPECTIVE \

BASED ON PREVIOUS PROGRAMS

TRAINING TASKS WERE EITHER NOT
IDENTIFIED OR WERE NOT WELL
UNDERSTOOD

SUPPORTED HIGH FIDELITY SIMULATION
OF THE VEHICLE

TOO MANY DIFFERENT WAYS TO FAIL A
"BLACK BOX"

REQUIRED FIDELITY OF FAILURE
SIGNATURES WAS LACKING

9 DGS/B N PEARSON:11/7/89: TASK ANALYSIS /



LESSONS LEARNED \

* NOT ALL TASKS REQUIRE A HIGH FIDELITY
SIMULATOR

- A WELL ORGANIZED CREW TRAINING
CATALOG HAS EVOLVED OVER THE PAST
13 YEARS

*+ THE STS TRAINING PROGRAM IS SLOWLY
EVOLVING TOWARD OBJECTIVES

» NEW "TRAINERS" ARE BEING DEVELOPED
WHICH OFF-LOAD THE SMS

3 DGS/B N PEARSON:11/7/89: TASK ANALYSIS j

LESSONS LEARNED \

* SMS FIDELITY HAS BEEN DECREASING IN
SOME AREAS AND INCREASING IN OTHER
AREAS AS TRAINING TASKS ARE MORE
FULLY UNDERSTOOD

- WE LEARNED BY DOING

1 DGS5/B N PEARSON:11/7/89:TASK ANALYSIS j



/ WHERE DO WE GO FROM HERE? w

QUESTION: HOW DO WE IMPROVE OUR ABILITY TO
IDENTIFY SIMULATION REQUIREMENTS FOR THE
SPACE STATION FREEDOM?

ANSWER: PERFORM A TRAINING REQUIREMENTS
ANALYSIS

K 0GS5/B N PEARSON:11/7/89:TASK ANALYSIS/

/ SPACE STATION FREEDOM \

TRAINING REQUIREMENTS ANALYSIS

TASK ANALYSIS IS BEING CONDUCTED FOR:
« CREW

- GROUND SUPPORT PERSONNEL IN THE
SPACE STATION CONTROL CENTER

« INSTRUCTORS

ANALYSIS

- REQUIREMENTS DEFINITION ANALYSIS
SYSTEM (RDAS)

USING AUTOMATED TOOL TO CONDUCT THE TASK

J




-

DEFINITION OF TRAINING \
REQUIREMENTS ANALYSIS

THE SYSTEMATIC PROCESS OF ANALYZING
TASKS TO DETERMINE:

- THE COMPONENT TASKS OF A JOB

+ THE TRAINING ACTIONS WHICH NEED TO
BE DEVELOPED TO OBTAIN THE REQUIRED
PERFORMANCE

.

/

PURPOSE OF TRAINING \
REQUIREMENTS ANALYSIS

TO IDENTIFY THE:
* TASKS WHICH MUST BE PERFORMED

» SKILLS AND BEHAVIORS REQUIRED TO
PERFORM THE TASKS

- CONDITIONS UNDER WHICH THE TASK
MUST BE PERFORMED

» SKILL LEVEL/MASTERY LEVEL REQUIRED
FOR ACCEPTABLE PERFORMANCE




BENEFITS OF TRAINING w
REQUIREMENTS ANALYSIS

- IDENTIFIES TRAINING REQUIREMENTS

- ESTABLISHES ADEQUATE JOB
PERFORMANCE GUIDELINES

- IDENTIFIES OPTIMAL TRAINING
STRATEGIES, METHODOLOGIES, AND MEDIA

- IDENTIFIES PROPER SEQUENCING OF
TRAINING

* ELIMINATES UNNECESSARY TRAINING
- REDUCES TRAINING COSTS

- 9 /

f SPACE STATION FREEDOM
TRAINING REQUIREMENTS ANALYSIS

Joe
TASK
ANALYSIS

'

TRAINING
OBJECTIVES
ANALYSIS

Y
Y K

MEDIA CURRICULUM

SELECTION DESIGN
ANALYSIS ANALYSIS

Y ¥

SSF TRAINING SSF PERSONNEL
FACILITIES REQUIREMENTS
MOOEL MODEL

Y

FACILITIES
LOADING
ANALYSIS
10 i




.

JOB TASK ANALYSIS \

- IDENTIFIES CRITICAL TASKS, SKILLS, AND
KNOWLEDGE REQUIREMENTS

- PRODUCT:
TASK HIERARCHY DATABASE REPORT

n J

(

\_

 FUNCTION: LARGEST SEGMENT OF WORK WITHIN AN

TASK HIERARCHY LEVELS AND \
DEFINITIONS

OPERATION: END GOAL OF COORDINATED ACTIVITY OF
A SYSTEM OF INDIVIDUALS

OPERATION ELEMENT: TIME SLICE OF AN OPERATION
WITH A LOGICAL BEGINNING AND END POINT

ELEMENT PERFORMED BY A SPECIFIC INDIVIDUAL OR
IDENTIFIABLE TEAM

TASK: NECESSARY STEP IN PERFORMANCE WITH
LOGICAL BEGINNING AND END. LOWEST LEVEL THAT
PERFORMANCE CAN BE EVALUATED

) J




GENERIC FLOW CHART OF
TASK HIERARCHY

i
Creration Element

b2
Ceeration Element

P

Sperariae flemreng

12
Function

122
Function

123
Function

1221
Task

/

1222
Task

13

1223
Task

SAMPLE FLOW CHART OF
TASK HIERARCHY

30
Nominal Space
Station Operations

312
EVA SS Maintenance
and Servicing

3121
Assemble and Checkout Spares
and Support Equipment

31219

Gather spares and support
equipment as noted in EVA

Servicing Checklist

31212
Visually check spares
and equtpment for
damage

14




/ FOCUS OF TASK ANALYSIS \

WHAT THE INDIVIDUAL DOES
- HOW THE INDIVIDUAL DOES IT
» WHAT THE INDIVIDUAL DOES IT WITH
- WHAT THE INDIVIDUAL DOES TO IT
- WHY THE INDIVIDUAL DOESIT

\\ DGS3/T K SMITH:3/16/89: TASK ANALYSIS
15

K TRAINING OBJECTIVES ANALYSIS \

- IDENTIFIES TERMINAL AND ENABLING
TRAINING OBJECTIVES

- PRODUCT:
OBJECTIVES HIERARCHY REPORT




INFORMATION DERIVED DURING \
THE TRAINING OBJECTIVES
ANALYSIS

DISCRETE BEHAVIORS REQUIRED TO PERFORM TASK
+ CONDITIONS UNDER WHICH TASK IS PERFORMED
e.g. DURING AN EVA, USING AN OPS CHECKLIST
STIMULI OR CUES FOR PERFORMANCE

e.g. GIVEN A CLASS il ALARM, GIVEN A
TEMPERATURE READING OF 30 DEGREES C

* CRITICALITY OF PERFORMANCE

e.g. DEGRADE SUCCESS OF MISSION, RESULT IN
MAJOR DAMAGE OR INJURY

\ DGSX/T K SMITH:3/16/89: TASK ANALYSIS
17

K INFORMATION DERIVED DURING \
THE TRAINING OBJECTIVES
ANALYSIS

- TIME TOLERANCE OF TASK

e.g. SPECIFIC TIME FRAME CRITICAL TO
SUCCESSFUL COMPLETION

+ PROFICIENCY REQUIRED

e.g. ACCOMPLISH TASK AT HIGHEST LEVELS OF
SPEED OR ACCURACY, ONLY ABLE TO COMPLETE

TASK WITH GUIDED ASSISTANCE
« FREQUENCY OF PERFORMANCE
e.g- ONCE DURING A MONTH, EVERY DAY

\ DGSXT K SMITH:3/16/89: TASK ANALYSIS /



( MEDIA SELECTION ANALYSIS

* IDENTIFIES GENERIC TRAINING MEDIA AND
FACILITIES CHARACTERISTICS

- PRODUCT:
MEDIA ANALYSIS REPORT

N ) .
f MEDIA ANALYSIS FLOW \

RDAS
OBUECTIVES. DATA
£oSsuRvey | BASE
¢ DATA ¢ j/
PREPROCESSING INSTRUCTIONAL INSTRUCTIONAL !"‘E'HODJ\
AND METHODS MEDIA AND

ERROR CHECKING ANALYSIS _/ ANALYSIS MEDIA
T '-’ i ,,vv’ T

o
2
SIMULATOR sini
ERROR CHARACTERISTICS cHARf
LoG ANALYSIS kit
3% .", L A”‘

ONBOARD ’_\
TRAINING ONBORRD ¢

ANALYSIS

\\ 20 DG53/A L WOOLDRIDGE:10/26/83:LOADING STUDY /




( MEDIA SELECTION MODEL X

TONDITICNS MEDIA ANC METKCDS
SROFSTIEMCY LE.T0 RTLLIRED

SESFORMANCE CRITERIA DIFFICULTY RATING MEDI A

TASK vOLATILITY LEARNING TvOE TOANING ACTIviT AND

CRITICALITY TYPE GF LEARNING EXPERIENCE (METHOD) SIMULATION
QDIFFICULTY FACTCRS MODALITY Hafa

TYBE OF LEARNING

FREQUENCY OF PERFORMANCE

TASK REPRESENTATIVENESS ’
LEARNING DIFFICULTY

ERRCR SUCCEPTABILITY

METHODS AND MEDIA SELECTED
BY EFFECTIVENESS/EFFICIENCY AND
RANKED BY RELATIVE COST

\ 21 DGSYA L WOOLDRIDGE:10/26/89:LOADING STUDY /

/ CURRICULUM DESIGN ANALYSIS \

+ IDENTIFIES TRAINING FLOW

- PRODUCTS:
COURSE OUTLINES
DETAILED LESSON LIST FOR EACH COURSE
COURSE PREREQUISITE CHART
LESSON PREREQUISITE CHART

\_ o, Y,




TRAINING FACILITIES MODEL \

- EVALUATES OBJECTIVES IN TERMS OF THE
TYPE OF TRAINING ACTIVITY (e.q.
SIMULATION, CBT, FAMILIARIZATION
BRIEFING) REQUIRED TO MEET THE
OBJECTIVES

* IDENTIFIES THE TRAINING SUPPORT
EQUIPMENT (e.g. NODE SYSTEMS TRAINER,
MODULE SYSTEMS TRAINER) REQUIRED TO
SUPPORT THE TRAINING ACTIVITY

\ ONG’NA
0 Pon }’P. G
2 d QU?QL/
r TRAINING FACILITIES MODEL \

S5F TRAINING FACILITIES/DEVICES ARE SELECTED IN TERMS OF;

POSITIONS AVAILABLE FOR TRAINING #
SYSTEMS SIMULATED *

EXTERNAL VISUAL S5YSTEM CHARACTERISTICS (1,2) [Scere Cintert Freig Of view|
INTERNAL PHYSICAL CHARACTERISTICS (1) iClass L)

DISPLAY TYPE (1,3) HLLUMINATED COLOR,UINE.INDICATOR)
GRAPHIC REPRESENTATION (1) IPHOTCGRAPHIC LINE GRAPHIC]
SIMULATION FIDELITY (1) (A8.CFI

SIMULATION RESPONSE/ STIMULATION CHARACTERIS TICS (1) ICHARACTERIZED REPLICATE]

INSTRUCTOR SUPPORT CHARACTERISTICS (OPTIONAL) (1,2)
INTEGRATED SIMULATION CAPABLE (1) ITEAM TRAINING POSSIBLE]
COST/HR OF INSTRUCTION »

NOTES:

(1) Media selectton moge! output/results

(2) Ltst of examples provided separately
(3) Only applies when analyzing single control element
* Direct interpretation of data from survey instrument
24 DG5%/A L WOOLDRIDGE:10/26/89:LOADING STUDY




K PERSONNEL REQUIREMENTS MODEL

- NUMBER OF PEOPLE REQUIRING TRAINING
AT ANY GIVEN TIME

N g /

/ FACILITIES LOADING ANALYSIS \

IDENTIFIES THE EXTENT TO WHICH TRAINING
FACILITIES WILL BE UTILIZED

THE FOLLOWING INFORMATION IS USED TO DEVELOP A
LOADING STUDY:

+ GSP AND CREW STAFFING REQUIREMENTS BY MONTH

*  MAXIMUM NUMBER OF INSTRUCTION HOURS PER
WEEK ALLOWED FOR EACH POSITION

+ SPACE STATION TRAINING FACILITY CONFIGURATION
- MAXIMUM TIME AVAILABLE FOR EACH MEDIA TYPE
+ CALENDAR LENGTH OF PROGRAM PHASE




/ TRAINING REQUIREMENTS ANALYSIS\

SCHEDULE

I 1959 ) 1990 y 1991 ; 1992 § 1993 , 1594 4 1935 L 1936

3 TE eSS
TRAINING e gy
. 2N3vsis i MEL'AnETTR .
RECUIREMENTS | R T — )
H P T CIREE ry WA HpcIRT
ANALYSIS i : SLTLINE i
SCHEDULE S 3IINSTRLCTIA Tagk anal(Sis
i f—— ST —
[EELED ° t FE=a
Sep 3 3
‘ {0SRR 5 33S0R 1abbwaRE,SCFT wanE 2EJELIOMENT . .
;:2‘29£_‘_LE'E.‘ ; L 7 ; 503 T
REQ H ' i
STR ZR T NING
SSTF i ' -~
- 2,33 CREW TRAININ
SCHEDULE | LI CREw 4 —
I ST
P

. /

/ REALITIES OF THE SPACE BUSINESS \

* PROPOSED USE OF SPACECRAFT CAN
CHANGE OVER TIME

+ COMPLEXITY OF SYSTEMS FLUCTUATES

* SUCCESS OF SYSTEMS INTEGRATION IS
QUESTIONABLE

- OPERATIONAL CONSIDERATIONS ARE
OVERSHADOWED BY SYSTEMS DESIGN

- STUDENT POPULATION CHANGES

*« FIRST GENERATION DOESN'T REQUIRE
"ELEMENTARY SCHOOL"

-« SECOND GENERATION REQUIRES MORE
\ PREPARATION FOR SIMULATORS /

Y] DG5/B N PEARSON:11/7/89:TASK ANALYSIS




-

SUMMARY \

INITIAL STEP IN DETERMINING
= TRAINING SYSTEMS REQUIREMENTS
*« TRAINING SIMULATION REQUIREMENTS

PROVIDES DESCRIPTION OF HOW THE JOB IS
PERFORMED

IS THE FOUNDATION FOR DEVELOPING
TRAINING OBJECTIVES, SELECTING
INSTRUCTIONAL MEDIA AND STRATEGIES,
AND DESIGNING LESSONS

/

SUMMARY \

BUILDING SSTF BASED ON KNOWLEDGE
ACQUIRED FROM PREVIOUS PROGRAMS

TRAINING REQUIREMENTS ANALYSIS HELPS
TO IDENTIFY SIMULATION FIDELITY
REQUIREMENTS

TRAINING REQUIREMENTS ANALYSIS
SHOULD HELP TO REDUCE THE
EVOLUTIONARY TIME FOR DEVELOPING
PART-TASK TRAINERS AND CURRICULUM
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Introduction

Purpose

Communicate experience with applying Entity-Relationship
Diagrams (ERD) to requirements engineering

Motivation - The need to respond to:

New programs (such as Space Station Freedom and Lunar/Mars
studies)

New technologles (such as Ada, OOD, and domain analysis)

New programmatic Initiatives (such as commonality, reuse, and
evolutionary/open-ended programs)

Objectives - Help answer the following questions:

Why should we Investigate new approaches to requirements
specification, in general?

Specifically, how can we apply ER notation to the requirements
development process?

What are the benefits, limitations, and directions of these
developments?

Scope of this presentation

Focused on requirements analysis, but overall method Is designed
to integrate Into design and Implementation

MDSSC-Engineering Services Division MCDONNELL DOUGLAS

Outline

MDSSC-Engineering Services Division

Background

Methoglology Development Overview

Example: Applying ERDs to analyzing a Space Station

plume impingement problem (Appendix)

Lessons Learned

Current Directions

MCDONNELL DOUGLAS




Background

Space Station Freedom Program and Ada
NASA’'s commonality and reuse goals (Cernosek, 1989a)

McDonnell Douglas - Houston: Ada and Software
Engineering Initiative (1987)

- Statement of commitment to help develop NASA's Ada
standard

- Capital investment to help share initial risks (Rational
Environment procurement)

- Practical methods for transitioning to Ada
environments (Cernosek, 1989b)

NASA-JSC / MPAD, Common Model Development (CMD)
project (1987, basis for this presentation)

MDSSC-Engineering Services Division MCDONNELL DOUGLAS

Drivers for the CMD Methodology

C. McKay/UHCL - Conceptual models for computer systems
and software engineering

- Development Environment
- Integration Environment
- Operations Environment

McDonnell Douglas’ Common Ada Missile Package - CAMP
(McNicholl et al, 1986) - Domain Analysis:

- Domain Definition - scope and boundary assessment

- Domain Representation - representative sample of existing
applications

- Commonality Study - common objects, operations, and
structures to consider for reuse

NASA Goddard Space Flight Center, Generalized Object-
Oriented Development (GOOD) (Seidewitz and Stark, 1987)

G. Booch (1983, 87) - Software engineering, Ada, and the
need to engineer reuse into the process and products

MDSSC-Engineering Services Division MCDONNELL DOUGLAS




MPAD Analysis Domains Considered

MANIPULA
-TORS &
TETHERS

- e

LEGEND:

O - INCLUDED IN
THIS SURVEY

+ A wide variety of mission planning and analysis domains
were considered for the CMD effort.

MDSSC-Engineering Services Division MCDONNELL DOUGLAS 5

Domain Selection Criteria and Rating Results

ELIGHT PLANNING
CHRITERIA Bendezvous Mavigalion |PBroxQps | BMS  Ascsal Qubit Desceat
° —Elpnrln Available 0 . . [} * *
g Dosumentalien . 0 (]
§ Space Station 3 * . . - .
; Appticabliity
@
5 Plans for the 0 * . .
2
b Oomain
Medularity . 0 0 0 ° . °
[ Degree of 0 * . [ [} . 0
§ Autematien
2 Complenity end [} - [} [} . 0
Size
—Mnnrlty of . . * - . * .
Domain
Computer Systems, - . [} ] ]
HW and SW
g
2 Outside Sources of 0 * 1] [
3 Llnlum.llon

« Proximity Operations was the domain selected for
prototyping.

MDSSC-Engineering Services Division MCDONNELL DOUGLAS (]




Goals for a Commonality-Oriented

Methodology (Cernosek, Pribyl, et al, 1987a)

1.

Completely define the problem statement

2. Consistently define the problem statement
3.
4

Correctly define the probiem statement

. Distinguish between true requirements, unduly constraining design

decisions, and usetul design suggestions

. Enhance communication between software users and software

developers

. Maximize the "abstractness” of the problem statement in such a

way that other projects can recognize common Items

. Produce self-describing requirements in a taxonomy that

complements the existing domain's application requirements

. Facilitate a search of the existing domain for "reusable”

requirements prior to proceeding to design and implementation

- Provide for natural mapping to object-oriented design in a manner

which facilitates traceability

MDSSC-Engineering Services Division MCDONNELL DOUGLAS

CMD Task Products and By-Products

CMD Delivery Documents - April-October 1987 (see
references)

- Domain Survey and Selection Document
- Domain Analysis Document

- Top-Level Design Document

- Methodologies Document

UHCL Master's Thesis - G. Cernosek, A Semantic Modeling
Approach to Integrating Requirements Analysis and
Object-Oriented Development (May 1988)
Domain- and Entity-Based Requirements Analysis (DEBRA)
- Domain-oriented to manage reuse of requirements and designs
products
- Entity-oriented to integrate better with OOD and Ada
Object-Oriented Development with Semantic Modeling
(OOD/sM)
- Addresses shortcomings of various Booch-like approaches to
0ooD

- Semantic modeling with ERDs help fill In the "semantic gap"
left by strictly object-oriented techniques

MOSSC-Engineering Services Division MCDONNELL DOUGLAS




Integrating Lifecycle Abstractions With ER
Models

DEBRA > QOD/ISM —»
High

4 \)omnln Ansiysls

+Hamaws scope of prodiem
World Model - Consiraing choces In modetng
ode rosiem W Oiolacn
...... n
ade

What 1yt exexewwd)

¢A panial undensiending
of AW

* Comain.grieniee

Adsiraction » ONisremt viewpaints » Mape ceqt's to sesign

« Conwraing cheices in

Requiremente

<'What ehal De® 00 ey

« Funcitenat requiremens

« Non-functional regi's s
models

* Lilssysio gonie

Softwars
yetem Model

» How N b implomented™
y » Top-level design

Low

Prodlem O ing «- & Selution D
Develspment Concern

« Any partitioning of the lifecycle is arbitrary => criteria is needed

+ Separate ER models are used for domain analysis, requirements
specification, and OOD

- Transition models are used to facilitate traceability and capture
rationale of modeling decisions

MDSSC-Engineering Services Division MCDONNELL DOUGLAS 9

Lessons Learned - On the use of ERDs for
Requirements Analysis

- Advantages
- Excellent for human communication
- Assists in domain analysis and lifecycle reuse
- Captures modeling decisions and assumptions
- Maps well to OOD and Ada packages

+ Limitations

- ERDs capture static semantics - dynamics and temporal
issues can be inferred, but must be expanded via other
notations (e.g., STDs, DFDs)

- Still not enough practical experience to assess full
applicability

- Shortcomings due to schedule
- Carried development only through preliminary design

- Evolutionary development needed to assess reusability
at requirements and design levels

MDSSC-Enginsering Services Division MONNNNEL ) NNt AQ - 10



On Requirements Modeling in General

+ Case study: omv Proximity Operations Simulation

(O’'Donnell and Marchand, 1989)

- Formal requirements modeling using Structured
Analysis w/real-time extensions (ERDs not used)

- Tool support via CADRE teamwork™
Advantages

- Customer acceptance

- Automates tedious manual efforts

- Consistency and completeness checks

- Especially appropriate for "stable" projects =>

- - Long-term funding secure (enough to realize benefits from
early lifecycie load-balancing

- - Completion-form style of contracting (where efticlency Is a must)
Limitations

- Cannot justify cost of maintaining models in some work
environments (e.g., engineering analysis tool
development)

- Hard to synchronize code and model maintenance

MDSSC-Engineering Services Division MCDONNELL DOUGLAS

Future Directions

Reverse engineering

Executable requirements specification languages

Ada as a requirements specification language -- debatable
- Has been proposed by others

- "Ada is not powerful enough, but...”

- - Package mechanism supports what-how relationship between
specification and implementation

- - Strong typing provides completeness and consistency checking
to a large degree

- - Inherent prototyping nature of englineering analysis
environments could significantly benefit

- - Single-point maintenance realized (package spec |s focal point
for engineering decisions)

- Hybrid approach possible:
- - Requirements and design modeling for [nitia] effort
- - Prototyping phase (untll stable basellne achieved)

- - Revislt modeling for post-product documentation (reverse
engineering)

MDSSC-Engineering Services Division MCDONNELL DOUGLAS
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Related and Supporting Efforts

+ In the Industry:

- Shlaer/Mellor's Object-Oriented Systems Analysis,
Project Technology, Inc.

- CADRE Training Series for teamwork™ tool support

- EVB Software Engineering, Object-Oriented
Requirements Analysis

- Peter Coad and Ed Yourdon, 00A - Object-Oriented
Analysis

- Others

- At MDSSC-ESD
- Ada Simulation Development System (ASDS)
- Common Models Working Group (COMWG)
- Operations Planning and Analysis System (OPAS)

MDSSC-Engineering Services Division MCOONNELL DOUGLAS
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